- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Bochdansky, Alexander B (1)
-
Craft, Noah J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The mesopelagic zone is a site of strong microbially driven particle attenuation with depth and thus plays a crucial role in controlling the transfer efficiency of the ocean's biological pump. However, little quantitative information exists on the dependency of decay processes on the source material. Here we followed the decay of14C‐labeled dead particulate organic carbon (POC) and dissolved organic carbon (DOC) from three different phytoplankton species, and two incubations of live diatoms, in mesopelagic water over 3 months. Commonly used first‐order kinetics failed to adequately describe the decay of organic material as rate constants varied from day to day. Over extended periods, decay rates for organic material exhibited two distinct phases, with rates in the second phase being inversely related to rates in the first phase. Microbial biomass (measured via adenosine triphosphate and cell counts) increased substantially during phase 1 and ebbed during phase 2. Decay rates were significantly different among the three algal sources; however, differences were even more pronounced among carbon pools and followed a distinct pattern (combined average per‐day decay rates at 12°C): fresh DOC (0.6) > fresh POC (0.1) > live cells (0.06) > aged DOC/POC (0.01). Separation of POC into four broad biochemical fractions showed that components in the operationally defined lipid fraction contained the most degradable compounds for fresh material. Our research highlights the need to include the dynamics of the most easily digestible fractions of freshly released organic material, and live plankton resilient to digestion, in calculations of vertical carbon flux budgets.more » « lessFree, publicly-accessible full text available March 1, 2026
An official website of the United States government
